Classifying Taxonomic Relations between Pairs of Wikipedia Articles
نویسندگان
چکیده
Natural language generation systems rely on taxonomic thesauri for tasks such as lexical choice and aggregation. WordNet is one such taxonomy, but it is limited in size. Motivated by the needs of a generation system in the scientific literature domain, we present a method for building a taxonomic thesaurus from Wikipedia articles, where each article represents a potential concept in the taxonomy. We propose framing the problem of creating a taxonomy as a classification task of the potential relations between individual Wikipedia article pairs, and show that a supervised algorithm can achieve high precision in this task with very little training data.
منابع مشابه
Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملTransforming Wikipedia into Named Entity Training Data
Statistical named entity recognisers require costly hand-labelled training data and, as a result, most existing corpora are small. We exploit Wikipedia to create a massive corpus of named entity annotated text. We transform Wikipedia’s links into named entity annotations by classifying the target articles into common entity types (e.g. person, organisation and location). Comparing to MUC, CONLL...
متن کاملSubtree Mining for Relation Extraction from Wikipedia
In this study, we address the problem of extracting relations between entities fromWikipedia’s English articles. Our proposed method first anchors the appearance of entities in Wikipedia’s articles using neither Named Entity Recognizer (NER) nor coreference resolution tool. It then classifies the relationships between entity pairs using SVM with features extracted from the web structure and sub...
متن کاملRelation Extraction from Wikipedia Using Subtree Mining
The exponential growth and reliability of Wikipedia have made it a promising data source for intelligent systems. The first challenge of Wikipedia is to make the encyclopedia machine-processable. In this study, we address the problem of extracting relations among entities from Wikipedia’s English articles, which in turn can serve for intelligent systems to satisfy users’ information needs. Our ...
متن کاملQuantitative Comparison of Tree Pairs Resulted from Gene and Protein Phylogenetic Trees for Sulfite Reductase Flavoprotein Alpha-Component and 5S rRNA and Taxonomic Trees in Selected Bacterial Species
Introduction: FAD is the cofactor of FAD-FR protein family. Sulfite reductase flavoprotein alpha-component is one of the main enzymes of this family. Based on applications of this enzyme in biotechnology and industry, it was chosen as the subject of evolutionary studies in 19 specific species. Method: Gene and protein sequences of sulfite reductase flavoprotein alpha-component, 5S rRNA sequence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013